skytimetravel.net

Soit la fonction affine définie sur par, avec et et. 1. Résolution d'une équation du premier degré à une inconnue b. Résolution d'une équation du type mx + p = 0 Exemple Résoudre l'équation. La solution est. c. Résolution d'une équation produit d. Résolution d'une équation quotient 2. Résolution d'une inéquation du premier a. Signe d'une fonction affine Rappel: le signe d'une fonction affine de la forme dépend du signe de. Deux cas sont possibles: si, alors le tableau de signes de la fonction affine est le suivant: c. Résoudre une inéquation produit Résoudre une inéquation produit, c'est résoudre une inéquation du type avec,, et, et. Cela revient à étudier le signe de chacun des facteurs, c'est-à-dire le signe de et celui de. Remarque Les inéquations du type, et sont aussi des inéquations produit. Méthode pour résoudre une inéquation produit à l'aide d'un tableau de signes: Déterminer la valeur de qui annule chacun des facteurs. Construire un tableau de signes avec une ligne pour les valeurs de rangées dans l'ordre croissant, une ligne pour chaque facteur et une ligne pour le produit des deux facteurs.

Résoudre Une Équation Produit Nul Avec Carré

Accueil > Terminale ES et L spécialité > Equations > Résoudre une équation "produit nul" Méthode Pour comprendre au mieux cette méthode, il est recommandé d'avoir lu: Résoudre une équation du 1er degré Résoudre une équation du 2nd degré Résoudre une équation simple avec l'exponentielle ou le logarithme Nous allons voir ici comment résoudre une équation produit nul. Une équation produit nul est une équation de type $A\times B=0$ où $A$ et $B$ sont des expressions. Par exemple l'équation $(3x-4)\times (1-e^x)=0$ est une équation produit nul. Attention, il est parfois nécessaire de factoriser avant d'obtenir une telle équation. Nous verrons quelques exemples ci-après. Pour résoudre une équation produit nul, on écrit $A\times B=0 \Leftrightarrow A=0 \qquad ou \qquad B=0$. On résout ensuite chacune des équations $A=0$ et $B=0$ séparément. Les solutions obtenues en résolvant ces deux équations sont celles de l'équation initiale. Remarques L'intérêt de cette méthode est qu'on transforme un problème $A\times B=0$ qui peut être compliqué en deux petits problèmes $A=0 \qquad ou \qquad B=0$ souvent beaucoup plus simple.

Résoudre Une Équation Produit Nul

Factorisons le membre de gauche de $(E_2)$ par $e^{1-x}$. $(E_2) \Leftrightarrow e^{1-x}(3-x)=0$ $(E_2) \Leftrightarrow e^{1-x}=0 \qquad ou \qquad 3-x=0$ Comme la fonction exponentielle est strictement positive, l'équation $e^{1-x}=0$ n'a pas de solution. (E_2) & \Leftrightarrow 3-x=0 \\ & \Leftrightarrow x=3 L'équation $(E_2)$ admet une seule solution: $3$. On remarque (propriété de la fonction exponentielle) que: $e^{-2x}=e^{-x}\times e^{-x}$ $(E_3) \Leftrightarrow e^{-x}-2e^{-x}\times e^{-x}=0$ Factorisons le membre de gauche par $e^{-x}$. $(E_3) \Leftrightarrow e^{-x}(1-2e^{-x})=0$ $(E_3) \Leftrightarrow e^{-x}=0 \qquad ou \qquad 1-2e^{-x}=0$ Comme la fonction exponentielle est strictement positive, l'équation $e^{-x}=0$ n'a pas de solution. (E_3) & \Leftrightarrow 1-2e^{-x}=0 \\ & \Leftrightarrow -2e^{-x}=-1 \\ & \Leftrightarrow 2e^{-x}=1 \\ & \Leftrightarrow e^{-x}=0, 5 \\ & \Leftrightarrow -x=\ln(0, 5) \\ & \Leftrightarrow x=-\ln(0, 5) \\ & \Leftrightarrow x=\ln(2) ( la dernière étape est facultative) L'équation $(E_2)$ admet une seule solution: $\ln(2)$.

Placer les 0 dans le tableau. Placer les signes de chaque facteur, de part et d'autre du 0. Compléter la dernière ligne en appliquant la règle des signes pour chaque colonne. Indiquer l'intervalle de solutions à l'aide de la dernière ligne du tableau. Résoudre l'inéquation. Étape 1: on détermine la valeur de qui annule chacun des Étape 2: on construit un tableau de signes avec une ligne pour les valeurs de rangées dans l'ordre croissant, une ligne pour chaque facteur et une ligne pour le produit des deux facteurs. Étape 3: on place les 0 dans le tableau, en utilisant l'étape 1. s'annule pour et pour. Étape 4: on place les signes en repérant le signe du coefficient de dans chacun des facteurs. Ici, chaque coefficient est positif donc, d'après le signe d'une fonction affine, l'expression est négative avant le 0 et positive après le 0. Étape 5: on applique la règle des signes par colonne. Étape 6: grâce à la dernière ligne du tableau, on peut lire que l'inéquation a pour ensemble de solutions:.

Appel À Candidature Association Sportive