skytimetravel.net

I - Conditionnement Définition A A et B B étant deux événements tels que p ( A) ≠ 0 p\left(A\right)\neq 0, la probabilité de B B sachant A A est le nombre réel: p A ( B) = p ( A ∩ B) p ( A) p_{A}\left(B\right)=\frac{p\left(A \cap B\right)}{p\left(A\right)} Remarques On note parfois p ( B / A) p\left(B/A\right) au lieu de p A ( B) p_{A}\left(B\right). Rappel: Le signe ∩ \cap (intersection) correspond à "et". De même si p ( B) ≠ 0 p\left(B\right)\neq 0, la probabilité de A A sachant B B est p B ( A) = p ( A ∩ B) p ( B) p_{B}\left(A\right)=\frac{p\left(A \cap B\right)}{p\left(B\right)}. Exemple Une urne contient 3 boules blanches et 4 boules rouges indiscernables au toucher. On tire successivement 2 boules sans remise On note: B 1 B_{1} l'événement "la première boule tirée est blanche" B 2 B_{2} l'événement "la seconde boule tirée est blanche" la probabilité p B 1 ( B 2) p_{B_{1}}\left(B_{2}\right) est la probabilité que la seconde boule soit blanche sachant que la première était blanche.

Exercice De Probabilité Conditionnelle

On choisit au hasard une voiture de ce modèle. Quelle est la probabilité qu'elle présente la panne $B$ sachant qu'elle présente la panne $A$? Quelle est la probabilité qu'elle présente la panne $A$ sachant qu'elle présente au moins une panne? 3: Calculer des probabilités conditionnelles On lance deux dés, non truqués, un rouge et un bleu, dont les faces sont numérotées de 1 à 6. Quelle est la probabilité que la somme des faces obtenues soit égale à 6 sachant qu'on a obtenu 1 avec au moins un des 2 dés. 4: Savoir traduire un énoncé en terme de probabilité conditionnelle Dans une classe, on considère les évènements F:« l'élève est une fille» et B:« l'élève est blond(e)». Traduire chaque phrase en terme de probabilité: 1) Un cinquième des filles sont blondes. 2) La moitié des blonds sont des filles. 3) Trois huitièmes des élèves sont des garçons. 4) Un élève sur huit est une fille blonde. 5: Déterminer la probabilité d'une intersection à l'aide d'un arbre pondéré E et F sont deux évènements tels que $\rm{P(E)}=0, 4$ et $\rm{P_E(F)}=0, 9$.

Probabilité Conditionnelle Exercice Et

Pour la calculer, on se place dans la situation où l'on se trouve après avoir obtenu une boule blanche au premier tirage. Il reste alors 6 boules dans l'urne; 2 sont blanches et 4 sont rouges. La probabilité de tirer une boule blanche au second tirage est donc: p B 1 ( B 2) = 2 6 = 1 3 p_{B_{1}}\left(B_{2}\right)=\frac{2}{6}=\frac{1}{3} Cette probabilité se place sur l'arbre de la façon suivante: On peut calculer de même p B 1 ‾ ( B 2) p_{\overline{B_{1}}}\left(B_{2}\right) est la probabilité que la seconde boule soit blanche sachant que la première était rouge.

Probabilité Conditionnelle Exercice Pour

On procède de même pour les autres probabilités. On retrouve ainsi: $p(M\cap R)=0, 51$, $p\left(\conj{M}\cap \conj{R}\right)=0, 09$, $p\left(\conj{R}\right)=0, 43$ et $p(R)=0, 57$. [collapse] Exercice 2 Une urne contient $12$ boules: $5$ noires, $3$ blanches et $4$ rouges. On tire au hasard deux boules successivement sans remise. En utilisant un arbre pondéré, calculer la probabilité pour que la deuxième boule tirée soit rouge. Correction Exercice 2 On appelle, pour $i$ valant $1$ ou $2$: $N_i$ l'événement "La boule tirée au $i$-ème tirage est noire"; $B_i$ l'événement "La boule tirée au $i$-ème tirage est blanche"; $R_i$ l'événement "La boule tirée au $i$-ème tirage est rouge". On obtient l'arbre pondéré suivant: D'après la formule des probabilités totales on a: $\begin{align*} p\left(B_2\right)&=p\left(N_1\cap R_2\right)+p\left(B_1\cap R_2\right)+p\left(R_1\cap R_2\right) \\ &=\dfrac{5}{12}\times \dfrac{4}{11}+\dfrac{3}{12}\times \dfrac{4}{11}+\dfrac{4}{12}\times \dfrac{3}{11} \\ &=\dfrac{1}{3} \end{align*}$ La probabilité pour que la deuxième boule tirée soit rouge est $\dfrac{1}{3}$.

Probabilité Conditionnelle Exercice A La

Le dé bleu a des faces numérotées 1; 1; 2; 2; 5; 6 Le dé rouge a des faces numérotées: 1; 2; 3; 4; 5; 6. On appelle $S$ la variable aléatoire qui à un lancer fait correspondre la somme des deux numéros tirés. Donner la loi de probabilité de S. Sachant que la somme $S$ est égale à 7, quelle est la probabilité que le dé bleu ait donné le numéro 2? Sachant que la somme $S$ est égale à 7, quelle est la probabilité que le dé rouge ait donné le numéro 2? Sachant que la somme $S$ est égale à 7, quelle est la probabilité que l'un des dés ait donné le numéro 2? Démontrer que les événements $S = 7$ et " le dé bleu a donné le numéro 2 " sont indépendants. Vues: 14920 Imprimer

(D'après Bac ES Amérique du Nord 2009) Un nouveau bachelier souhaitant souscrire un prêt automobile pour l'achat de sa première voiture, a le choix entre les trois agences bancaires de sa ville: agence A, agence B et agence C. On s'intéresse au nombre de prêts automobiles effectués dans cette ville. On a constaté que: 20% des prêts sont souscrits dans l'agence A, 45% des prêts sont souscrits dans l'agence B, les autres prêts étant souscrits dans l'agence C. On suppose que tous les clients souscrivent à une assurance dans l'agence où le prêt est souscrit. Deux types de contrats sont proposés: le contrat tout risque, dit Zen et le deuxième contrat appelé Speed. 80% des clients de l'agence A ayant souscrit un prêt automobile, souscrivent une assurance Zen. 30% des clients de l'agence B ayant souscrit un prêt automobile, souscrivent une assurance Zen. 2 7 \frac{2}{7} des clients de l'agence C ayant souscrit un prêt automobile, souscrivent une assurance Speed. On interroge au hasard un client d'une de ces trois banques ayant souscrit un contrat d'assurance automobile.

Piece Pour Frigo Americain Samsung