skytimetravel.net

Géométrie dans l'espace - Sections planes de solides (plan parallèle à une face) - CORRIGE Géométrie dans l'espace - Ex 1b - Sectio Document Adobe Acrobat 147. 6 KB Télécharger

  1. Exercice corrigé transformation géométrique au
  2. Exercice corrigé transformation géométrique la
  3. Exercice corrigé transformation géométrique 2

Exercice Corrigé Transformation Géométrique Au

Démontrer que les droites $(RS)$ et $(BC)$ sont parallèles. Déterminer la longueur $RS$. Correction Exercice 2 $\quad$ $\quad$ Dans les triangles $ASR$ et $ABC$: – Les points $A, S, C$ et $A, R, B$ sont alignés dans le même ordre. – $\dfrac{AS}{AC}$ $=\dfrac{2}{6}$ $=\dfrac{1}{3}$ – $\dfrac{AR}{AB} = \dfrac{9 – 6}{9}$ $=\dfrac{3}{9}$ $ =\dfrac{1}{3}$ Par conséquent $\dfrac{AS}{AC} = \dfrac{AR}{AB}$. D'après la réciproque du théorème de Thalès, les droites $(RS)$ et $(BC)$ sont parallèles. On a de plus que $\dfrac{AS}{AC} = \dfrac{AR}{AB}=\dfrac{RS}{BC}$ soit $\dfrac{1}{3} = \dfrac{RS}{7, 5}$. Donc $RS = \dfrac{7, 5}{3} = 2, 5$. Autour du théorème de Pythagore Exercice 3 $ABC$ est un triangle tel que $AB=1$ cm, $AC = \dfrac{\sqrt{2}}{2}$ cm et $BC = \dfrac{1}{\sqrt{2}}$ cm. Quelle est la nature du triangle $ABC$. Exercice corrigé transformation géométrique au. Correction Exercice 3 Dans le triangle $ABC$ le plus grand côté est $[AB]$. D'une part $AB^2 = 1$ D'autre part $AC^2 + BC^2 = \dfrac{2}{4} + \dfrac{1}{2}$ $=1$ Donc $AB^2=AC^2+BC^2$ D'après la réciproque du théorème de Pythagore, le triangle $ABC$ est donc rectangle en $C$.

Exercice Corrigé Transformation Géométrique La

Que représente $O$ pour le triangle $PMN$? Que peut-on dire de la médiatrice du segment $[PN]$? Correction Exercice 6 Le point $O$ est le point d'intersection de deux médiatrices du triangles $MNP$. Il s'agit donc du centre du cercle circonscrit au triangle $MNP$ La médiatrice de $[PN]$ passera donc également par $O$. Exercice 7 $ABC$ est un triangle isocèle en $B$. $D$ est le symétrique de $A$ par rapport à $B$. Démontrer que le triangle $ACD$ est rectangle. Correction Exercice 7 Puisque $D$ est le symétrique de $A$ par rapport à $B$ cela signifie donc que $AB=BD$. $B$ est par conséquent le milieu de $[AD]$ et $[CB]$ est une médiane du triangle $ACD$. Or $CB = AB$ donc $CB = \dfrac{AD}{2}$. La médiane issue de $C$ a donc une longueur égale à la moitié de la longueur du côté opposé. Le triangle $ACD$ est rectangle en $C$. Exercice 8 On considère le cercle $\mathscr{C}$ de centre $O$ circonscrit à un triangle $ABC$. Exercices corrigés - 2nd - Géométrie dans le plan. On appelle $M$, $N$ et $P$ les milieux respectifs de $[AB]$, $[AC]$ et $[BC]$.

Exercice Corrigé Transformation Géométrique 2

De plus $AC= \dfrac{\sqrt{2}}{2}$ et $BC=\dfrac{1}{\sqrt{2}} \times \dfrac{\sqrt{2}}{\sqrt{2}} = \dfrac{\sqrt{2}}{2}$ Donc $AC=BC$ et le triangle $ABC$ est également isocèle en $C$. De plus $\dfrac{\sqrt{2}}{2} = \dfrac{\sqrt{2}}{\sqrt{2} ^2} = \dfrac{1}{\sqrt{2}}$ Donc le triangle $ABC$ est également isocèle en $C$. Exercice corrigé Transformations géométriques pdf. Exercice 4 Soit un rectangle $ABCD$ tel que $AB = 7$ et $AD = 6$. On place le point $E$ sur $[AB]$ tel que $AE = 3$ et le point $M$ sur $[AD]$ tel que $EM = \sqrt{13}$. Le triangle $EMC$ est-il rectangle? Correction Exercice 4 Nous allons calculer les longueurs $EC$ et $MC$ Dans le triangle $BCE$ rectangle en $B$ on applique le théorème de Pythagore: $EC^2 = BE^2 + BC^2$ $=4^2+6^2 = 16 + 36 = 52$ Pour calculer la longueur $MC$ nous avons besoin de connaître $DM$ et donc $AM$ Dans le triangle $AME$ rectangle en $A$ on applique le théorème de Pythagore: $ME^2 = AM^2 + AE^2$ soit $13 = 3^2 + MA^2$ d'où $MA^2 = 13 – 9 = 4$ et $MA = 2$ Par conséquent $DM = 6 – 2 = 4$. Dans le triangle $DMC$ rectangle en $D$ on applique le théorème de Pythagore: $MC^2 = MD^2+DC^2$ $=4^2+7^2 = 16 + 49$ $=65$ Dans le triangle $EMC$ le plus grand côté est $[MC] $.

Placer deux points A et O tels que AO = 5 cm Soit… Les rotations – 4ème – Evaluation, bilan, contrôle avec la correction sur les transformations du plan Evaluation, bilan, contrôle avec la correction sur "Les rotations" pour la 4ème Notions sur "Les transformations du plan" Compétences évaluées Construire l'image d'un point par une rotation. Construire l'image d'une figure par une rotation. Déterminer une rotation qui transforme un point en un autre point. Consignes pour ces évaluation, bilan, contrôle: Exercice N°1 Indiquer l'image de chaque point par la rotation de centre O et d'angle  dans le sens indiqué. Exercice corrigé transformation géométrique et.  = 30° Sens horaire S → …….. Les rotations – 4ème – Séquence complète sur les transformations du plan Séquence complète sur "Les rotations" pour la 4ème Notions sur "Les transformations du plan" Cours sur "Les rotations" pour la 4ème Définition: Effectuer la rotation d'une figure F, c'est la faire pivoter autour d'un point O, appelé centre de la rotation, sans la déformer. (sens anti horaire) Exemples…

Timbre Bloc Caisse Des Depots