skytimetravel.net

6/ Déplacements Si une transformation f est un déplacement alors: f est soit une translation soit une rotation d'angle non nul. f déplacement est une similitude directe de rapport 1, donc f s'écrit: z' = az + b avec lal = 1 Et nous avons montré que: - si a = 1: alors f est la translation de vecteur d'affixe b. Et il est à remarquer que: - si b ≠ 0: f n'admet aucun point fixe. - si b = 0: f = Id et tout point du plan est fixe.. - si a ≠ 1: alors a s'écrit a = ei 0 avec 0 non nul car a ≠ 1. f admet alors un unique point fixe d'affixe f = r o h avec r = r (; 0) et h = h (; lal). Or: h = Id donc f = r. Dans ce cas là, f est donc une rotation d'angle non nul. Conséquence: Un déplacement admettant un point fixe est soit l'identité, soit une rotation d'angle non nul. En effet, d'après le listage fait lors de la démonstration du théorème: - soit f est un déplacement admettant un unique point fixe auquel cas il s'agit d'une rotation d'angle non nul. Similitudes directes - Cours maths Terminale - Tout savoir sur les similitudes directes. - soit f est un déplacement avec plus d'un point fixe auquel cas il s'agit de l'identité.

  1. Similitude directe et nombre complexe pdf sur
  2. Similitude directe et nombre complexe pdf et

Similitude Directe Et Nombre Complexe Pdf Sur

similitude directe toute similitude qui conserve les angles orientés. Une isométrie directe est appelée un déplacement. L'identité, les translations, les homothéties, les rotations, les symétries centrales sont des similitudes directes. similitude indirecte toute similitude qui transforme tout angle en son opposé. Une isométrie indirecte est appelée un anti-déplacement. Similitude directe et nombre complexe pdf online. Les réflexions sont des similitudes indirectes 2/ Angle d'une similitude directe Propriété: Si s est une similitude directe alors: quels que soient les points distincts A et B du plan, d'images respectives A' et B', l'angle est constant. Cet angle est appelé angle de la similitude. Démonstration: Soient A, B, C et D quatre points distincts du plan, d'images respectives A', B', C' et D'. Or, s similitude directe conserve les angles orientés, donc: On a donc: L'angle entre un vecteur et son vecteur image est bien constant. - les translations, l'identité et les homothéties de rapport k >0 sont des similitudes d'angle nul. - les homothéties de rapport k et les symétries centrales sont des similitudes d'angle.

Similitude Directe Et Nombre Complexe Pdf Et

Le rang d'une famille de vecteurs est invariant par opération élémentaire. Deux matrices sont équivalentes si et seulement si elles ont le même rang. L'application rang, de dans, est semi-continue inférieurement. La plus grande fonction convexe fermée qui minore le rang sur la boule, où (on a noté le vecteur des valeurs singulières de) est la restriction à cette boule de la norme nucléaire. De manière plus précise, si l'on définit par, où est l' indicatrice de, alors sa biconjuguée s'écrit [ 2], [ 3]. Sans restriction du rang à un ensemble, on obtient, une identité de peu d'utilité. Cas où le corps des scalaires n'est pas commutatif [ modifier | modifier le code] Dans ce qui précède, on a supposé que le corps des scalaires est commutatif. Rang (algèbre linéaire) — Wikipédia. On peut étendre la notion de rang d'une matrice au cas où le corps des scalaires n'est pas forcément commutatif, mais la définition est un peu plus délicate. Soient un corps non forcément commutatif et une matrice à m lignes et n colonnes à coefficients dans.

Pour l'exemple, prenons la transposée de la matrice A ci-dessus: On voit que la 4 e ligne est triple de la première, et que la troisième ligne moins la deuxième est double de la première. Après échelonnement, on obtient donc: et le rang de cette matrice est bien 2. Similitude directe et nombre complexe pdf sur. Rang d'une forme quadratique [ modifier | modifier le code] Le rang d'une forme quadratique est le rang de la matrice associée. Rang d'une application linéaire [ modifier | modifier le code] Étant donnés deux -espaces vectoriels,, où est un corps commutatif, et une application linéaire de dans, le rang de est la dimension de l' image de. Si et sont de dimensions finies, c'est aussi le rang de la matrice associée à dans deux bases de et. En particulier, le rang de la matrice associée à ne dépend pas des bases choisies pour représenter. En effet, la multiplication à droite ou à gauche par une matrice inversible ne modifie pas le rang, ce qui amène, où est la matrice représentant dans un premier couple de bases, et, des matrices de changement de base.

Jauge De Profondeur Numérique