skytimetravel.net

Attention! Une suite divergente ne tend pas forcément vers l'infini. Exemple: u n = (-1)n oscille et n'a de limite ni finie, ni infinie. Propriétés: 1° la limite finie d'une suite lorsqu'elle existe est unique. 2° une suite qui converge est bornée. Et conséquence de 2°, en utilisant sa contraposée: 3° si une suite n'est pas bornée alors elle diverge. Car d'après 2°:si elle convergeait, elle serait bornée. la réciproque du 2° est fausse. Limites suite géométrique la. En effet, si nous reprenons l'exemple du dessus: -1 un 1; Et pourtant la suite diverge. 2/ Théorèmes de convergence Théorèmes de convergence monotone: * Si ( u n) est croissante et majorée alors ( u n) converge. La suite « monte » mais est bloquée par « un mur » donc elle possède une limite finie. * Si ( u n) est décroissante et minorée alors ( u n) converge. La suite « descend » mais est bloquée par « un mur » donc elle possède une limite finie. Remarque: Savoir que la suite converge ne donne en rien sa limite mais permet dans certains cas d'appliquer des théorèmes qui permettent de la calculer.

Limites Suite Géométrique Et

5/ Limite d'une suite définie par une fonction S'il existe une fonction f telle que: u n = f (n) et si f admet une limite finie ou infinie en alors: On va donc gérer la recherche de la limite de ( u n) comme on gérerait la recherche de la limite de f en, mais en utilisant n comme variable. Exemple: Soit Donc ( u n) converge vers 0. 6 / Limite d'une suite définie par récurrence Théorème Soit une fonction f définie sur un intervalle I et soit ( u n) une suite vérifiant: pour tout n: I et u n+1 = f ( u n) * Si (un) converge vers et si f est continue en alors vérifie: f() =. Pour trouver les valeurs possibles de, il faut donc résoudre l'équation: f Graphiquement (x)=x Démonstration du théorème Cette démonstration est LA démonstration à connaître sur les suites. Elle fait régulièrement l'objet d'un R. C au BAC. Si ( u n) converge vers alors tout intervalle] a; b [ contenant contient tous les termes de la suite à partir d'un certain rang. Limites suite géométrique avec. Soit un intervalle ouvert quelconque] a; b [ contenant et n0 le rang à partir duquel les termes de ( u n) sont dans cet intervalle.

Limites Suite Géométrique

Calculer la limite d'une suite géométrique (1) - Terminale - YouTube

Limites Suite Géométrique La

♦ Démonstrations du cours: Si $q\gt 1$ Si $0\lt q\lt 1$ Si $-1\lt q\lt 0$ Traceurs de suite pour trouver la limite graphiquement Savoir utiliser sa calculatrice pour conjecturer la limite d'une suite ♦ Calculer avec une calculatrice CASIO graph 35+ les premiers termes d'une suite pour conjecturer la limite: ♦ Calculer avec une calculatrice TI-82 ou TI-83, les premiers termes d'une suite pour conjecturer la limite:
Il est ainsi possible, connaissant u 0 (ou u p) et q, de calculer n'importe quel terme de la suite. Pour une suite géométrique de raison –0, 3 et de premier terme u 0 = 7, on peut écrire u n = u 0 × (–0, 3) n et ainsi connaitre directement la valeur de n'importe quel terme de la suite. Par exemple, u 4 = 7 × (–0, 3) 4 = 7 × 0, 0081 = 0, 0567. 2. Somme des puissances d'un réel q Soit q un réel et n un entier naturel. On a: S = 1 + q + q 2 + … + q n = pour q ≠ 1. Remarque Pour q = 1, cette somme vaut simplement. Démonstration q 3 +... + q n En multipliant S par q on obtient: qS = q + q 2 + q 3 + … + q n +1. Soustrayons membre à membre ces deux inégalités: S – qS = (1 + q + q 2 + q 3 +... + q n) – ( q + q n + q n +1) Dans le membre de droite, q, q 2, q 3, …, q n s'éliminent. Ainsi, il reste S (1 – q) = 1 – q n +1. Les suites - Mathématiques - BTS CG. En divisant par 1 – q, pour q ≠ 1, on obtient. On retiendra que n + 1 est le nombre de termes dans la somme S. La somme des 10 premières puissances de 2 est: S = 1 + 2 + 2 2 + … + 2 9 = = 2 10 – 1 = 1023.
Lacrim Et Philipp Plein