skytimetravel.net

3. Propriétés des diviseurs. Propriété: Si deux entiers naturels admettent d comme diviseur, alors leur somme et leur produit admettent aussi d comme diviseur. Preuve: Soient a et b les deux entiers naturels. Comme d est un diviseur de a, il existe un entier k tel que:. De même, il existe un entier k' tel que:. Par suite: donc d est un diviseur de a + b. Supposons maintenant. On a: donc d est un diviseur de a – b. Le raisonnement est identique si. 1. Diviseurs communs à deux entiers. Définition: On appelle diviseur commun à deux nombres a et b tout nombre d qui est à la fois un diviseur de a et de b. L'ensemble des diviseurs communs à deux nombres a et b admet un plus grand élément, appelé Plus Grand Commun Diviseur et noté PGCD(a; b). Méthodes de recherche: Calcul d'un PGCD par soustractions successives: Cette méthode est basée sur le fait que si d est un diviseur de deux entiers a et b (avec a

Ensemble Des Nombres Entiers Naturels N Et Notions En Arithmétique L

Il n'y a pas besoin de calculer le produit \(24 \times 180\) pour connaître sa décomposition en facteurs premiers! Il suffit de décomposer chaque nombre et d'appliquer les règles de calcul sur les puissances. Nombres rationnels et décimaux Définition et exemples On dit qu'un nombre \(q\) est rationnel s'il existe deux nombres \(a\in\mathbb{Z}\) et \(b \in \mathbb{N}\), avec \(b\neq 0\), tels que \(q=\frac{a}{b}\). L'ensemble des nombres rationnels se note \(\mathbb{Q}\) On dit qu'un nombre \(d\) est décimal s'il existe deux nombres \(a\in\mathbb{Z}\) et \(b \in \mathbb{N}\) tels que \(d=\frac{a}{10^b}\). L'ensemble des nombres rationnels se note \(\mathbb{D}\). Exemple: \(\frac{3}{7}\) est un nombre rationnel. De même, \(2\) est un nombre rationnel puisque \(2=\frac{2}{1}\). Exemple: \(12, 347\) est décimal. En effet, \(12, 347=\frac{12347}{1000}=\frac{12347}{10^3}\). C'est également un nombre rationnel. On a \(\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}\) \(\frac{1}{3}\) n'est pas décimal Démonstration: Supposons que \(\frac{1}{3}\) soit décimal.

Ensemble Des Nombres Entiers Naturels N Et Notions En Arithmétique 2019

2. Fractions irréductibles. Une fraction non simplifiable est dite irréductible. Propriété: Une fraction est irréductible lorsque son numérateur et son dénominateur sont premiers entre eux. Méthode: Pour rendre une fraction irréductible, il suffit de diviser le numérateur et le dénominateur par leur PGCD. est une fraction irréductible car 45 et 28 sont premiers entre eux. n'est pas une fraction irréductible, car PGCD(135; 75) = 15. On peut donc simplifier la fraction comme suit:. On obtient alors une fraction irréductible. 3. Les ensembles de nombres. Définitions: La liste des entiers naturels forme un ensemble noté N. La liste des nombres entiers positifs et négatifs forme un ensemble noté Z. La liste des nombres relatifs dont l'écriture à virgule comporte un nombre fini de chiffres forme un ensemble noté D. La liste des nombres qui peuvent s'écrire sous la forme p/q, avec p entier relatif et q entier relatif non nul, forme un ensemble noté Q. L'ensemble N est une partie de Z. L'ensemble Z est une partie de D.

Ensemble Des Nombres Entiers Naturels N Et Notions En Arithmétique

Le théorème des restes chinois peut encore se reformuler de la façon suivante en termes de congruences: Théorème des restes chinois: Soit $m$ et $n$ des entiers premiers entre eux. Alors, pour tout $(a, b)\in\mathbb Z^2$, le système \begin{array}{rcl} x&\equiv&a\ [m]\\ x&\equiv&b\ [n] \end{array}\right. $$ admet au moins une solution. De plus, si $x_0$ est une solution particulière, l'ensemble des solutions est $\{x_0+kmn;\ k\in\mathbb Z\}. $

Ensemble Des Nombres Entiers Naturels N Et Notions En Arithmetique

On dit que \(a\) est pair s'il existe \(k\in\mathbb{Z}\) tel que \(a=2k\). Autrement dit, \(a\) est un multiple de \(2\). On dit que \(a\) est impair s'il existe \(k\in\mathbb{Z}\) tel que \(a=2k+1\). Exemple: \(23=2\times 11+ 1\), \(23\) est donc impair. On a les propriétés suivantes: La somme de deux nombres pairs est un nombre pair La somme de deux nombres impairs est un nombre pair La somme d'un nombre pair et d'un nombre pair est un nombre impair Démonstration: Le premier point est une conséquence directe d'une propriété de la partie précédente: deux nombres pairs sont des multiples de 2. Leur somme est donc un multiple de 2. Nous allons démontrer que la somme d'un entier pair et d'un entier impair est un nombre impair. Soit \(a\) un nombre pair et \(b\) un nombre impair. Puisque \(a\) est pair, il existe \(k\in\mathbb{Z}\) tel que \(a=2k\). Puisque \(b\) est impair, il existe \(k'\in\mathbb{Z}\) tel que \(b=2k'+1\) Ainsi, \(a+b=2k+2k'+1=2(k+k')+1\). Or, \(k+k'\) est un entier relatif, \(a+b\) est donc un nombre impair.

Division euclidienne Soient $a$ et $b$ deux entiers relatifs. On dit que $a$ divise $b$, ou que a est un diviseur de $b$ s'il existe $k\in\mathbb Z$ tel que $b=ka$. On dit encore que $b$ est un multiple de $a$. Théorème (division euclidienne): Soient $(a, b)\in\mathbb Z^2$ avec $b\neq 0$. Il existe un unique couple $(q, r)\in\mathbb Z^2$ tels que $$\left\{ \begin{array}{l} a=bq+r\\ 0\leq r< |b|. \end{array} \right. $$ $q$ s'appelle le quotient et $r$ s'appelle le reste. pgcd, ppcm Si $a$ et $b$ sont deux entiers relatifs dont l'un au moins est non-nul, alors le pgcd de $a$ et $b$, noté $a\wedge b$, est le plus grand diviseur commun de $a$ et $b$. Cette définition se généralise à plus de deux entiers, en supposant toujours qu'au moins un est non-nul. Si $a=b=0$, on pose $a\wedge b=0$. On a $(d|a\textrm{ et}d|b)\iff d|a\wedge b$. Si $a, b, k\in (\mathbb Z\backslash\{0\})^3$, alors $(ka)\wedge (kb)=|k|(a\wedge b)$. Algorithme d'Euclide: Si $r$ est le reste dans la division euclidienne de $a$ par $b$, alors on a $$a\wedge b=b\wedge r. $$ On en déduit l'algorithme suivant pour calculer le pgcd pour $a\geq b\geq 0$.

Brumisateur Serre Basse Pression