skytimetravel.net

[Résolu] Gradient en coordonnées cylindriques • Forum • Zeste de Savoir Aller au menu Aller au contenu Aller à la recherche Le problème exposé dans ce sujet a été résolu. Bonjour, J'ai toujours eu un peu de mal avec les coordonnées polaires (ou cylindriques). Un exemple: le calcul du gradient en coordonnées cylindriques. Soit $f:\Bbb R^3\to\Bbb R $ différentiable au point M de coordonnées polaires $(r, \theta, z)$, et on note $g = f(rcos\theta, rsin\theta, z)$, alors via la "chain rule" on obtient: $$\nabla f(rcos\theta, rsin\theta, z) = \frac {\partial g}{\partial r}(r, \theta, z)e_r + \frac 1r \frac {\partial g}{\partial \theta}(r, \theta, z)e_\theta + \frac {\partial g}{\partial z}(r, \theta, z)e_z$$ Ce calcul me semble tout à fait cohérent, du moins j'en comprends la preuve pas à pas. Comment expliquer alors, lorsque je regarde la page wikipédia du gradient cette autre formule: $$\nabla f(r, \theta, z) = \frac {\partial f}{\partial r}(r, \theta, z)e_r + \frac 1r \frac {\partial f}{\partial \theta}(r, \theta, z)e_\theta + \frac {\partial f}{\partial z}(r, \theta, z)e_z$$ Clairement les deux formules sont distinctes.

  1. Gradient en coordonnées cylindriques la
  2. Gradient en coordonnées cylindriques en
  3. Gradient en coordonnées cylindriques sur
  4. Gradient en coordonnées cylindriques 2019

Gradient En Coordonnées Cylindriques La

4, 9 (85 avis) 1 er cours offert! 5 (128 avis) 1 er cours offert! 5 (118 avis) 1 er cours offert! 5 (80 avis) 1 er cours offert! 4, 9 (66 avis) 1 er cours offert! 4, 9 (95 avis) 1 er cours offert! C'est parti Gradient en coordonnées cylindriques En coordonnées cylindriques, on représente un point M différemment qu'en coordonnées scalaires. En effet, on caractérise un point M avec les coordonnées r, θ et z avec r étant le rayon du cylindre, θ l'angle polaire et z la troisième coordonnée du cylindre. A l'instar du gradient pour les coordonnées cartésiennes, on a la dérivée totale de la fonction cylindrique f qui est égale à: En revanche les composantes du gradient en coordonnées cylindriques diffèrent, et on a: Où trouver des cours de maths pour réviser avant une épreuve? Gradient en coordonnées sphériques En coordonnées sphériques, on représente un point M différemment qu'en coordonnées scalaires. En effet, on caractérise un point M avec les coordonnées r, θ et φ avec r étant le rayon du cylindre, θ l'angle entre l'axe z et le rayon et φ étant l'angle entre l'axe x et la projection du rayon dans le plan x, angle varie donc entre 0 et 2π en coordonnées polaires.

Gradient En Coordonnées Cylindriques En

On remarque que quand l'on effectue les dérivées partielles par rapport à une variable, les autres variables sont quant à elles considérées comme des constantes. Il faut donc toujours faire très attention à la variable par rapport à laquelle on dérive. Il existe un lien entre le gradient et la différentielle totale d'une fonction. On note Par conséquent, pour revenir à notre exemple précédent, la dérivée totale de la fonction f est égale à: On peut également considérer la différentielle totale par le produit scalaire du gradient par le vecteur dr avec r étant le déplacement élémentaire de composante dx, dy, dz. On note dans ce cas: Les meilleurs professeurs de Maths disponibles 5 (80 avis) 1 er cours offert! 4, 9 (110 avis) 1 er cours offert! 4, 9 (85 avis) 1 er cours offert! 5 (128 avis) 1 er cours offert! 5 (118 avis) 1 er cours offert! 5 (80 avis) 1 er cours offert! 4, 9 (66 avis) 1 er cours offert! 4, 9 (95 avis) 1 er cours offert! 5 (80 avis) 1 er cours offert! 4, 9 (110 avis) 1 er cours offert!

Gradient En Coordonnées Cylindriques Sur

@membreComplexe12: la démarche pour changer de repère pour l'expression de nabla est celle que me donne Sennacherib. Du coup, je vois parfaitement d'où sors la formule du nabla dans un repère cylindrique, mais je ne vois toujours pas mon erreur. En tout cas, merci pour ton lien, il y a l'air d'avoir quelque petites choses intéressantes. @cklqdjfkljqlfj: je pense (comme Sennacherib apparemment) que mon erreur n'est pas une simple erreur de calcul mais une erreur de changement de repère ou de raisonnement. J'ai aussi l'expression du nabla dans un repère cylindrique dans mes cours, et ces \(2\) en trop me rendent fou (enfin, peut être pas quand même). @Sennacherib: merci pour ta preuve et tes pistes de réflexion. à la réflexion, j'ai l'impression que le calcul que tu réalises ne conduit pas au bon résultat car il n'exprime pas le vecteur cherché; ce calcul donne simplement l'expression en fonction de r, θ, z des composantes cartésiennes conduisant à un vecteur ainsi exprimé dans le repère cylindrique sans signification (? )

Gradient En Coordonnées Cylindriques 2019

et fig., 19, 3 × 25 cm ( ISBN 978-2-10-072407-9, EAN 9782100724079, OCLC 913572977, BNF 44393230, SUDOC 187110271, présentation en ligne, lire en ligne), fiche n o 2, § 2 (« Les coordonnées cylindriques »), p. 4-5. [Noirot, Parisot et Brouillet 2019] Yves Noirot, Jean-Paul Parisot et Nathalie Brouillet ( préf. de Michel Combarnous), Mathématiques pour la physique, Malakoff, Dunod, coll. « Sciences Sup. », août 1997 ( réimpr. nov. 2019), 1 re éd., 1 vol., X -229 p., ill. et fig., 17 × 24 cm ( ISBN 978-2-10-080288-3, EAN 9782100802883, OCLC 492916073, BNF 36178052, SUDOC 241085152, présentation en ligne, lire en ligne), chap. 2, § 1. 2. 3 (« Exemple de coordonnées curvilignes: coordonnées cylindriques »), p. 86-27. [Taillet, Villain et Febvre 2018] Richard Taillet, Loïc Villain et Pascal Febvre, Dictionnaire de physique, Louvain-la-Neuve, De Boeck Supérieur, hors coll., janv. 2018, 4 e éd. mai 2008), 1 vol., X -956 p., ill. et fig., 17 × 24 cm ( ISBN 978-2-8073-0744-5, EAN 9782807307445, OCLC 1022951339, BNF 45646901, SUDOC 224228161, présentation en ligne, lire en ligne), s. coordonnées cylindriques, p. 159.

Ainsi, on a: Soit (tenant compte de ce que et dépendent de): ou Le résultat est bien un scalaire! !

Par Choc Arriere 207